Introduction to Organic Chemistry 2018-7 lectures

Handout 1 - Bonding

Dr Jonathan Burton

http://burton.chem.ox.ac.uk/teaching.html

■ Organic Chemistry J. Clayden, N. Greeves, S. Warren

- Stereochemistry at a Glance J. Eames \& J. M. Peach
- The majority of organic chemistry text books have good chapters
on the topics covered by these lectures

Course Outline

These seven lectures will focus on bonding, stereochemistry, and an introduction to mechanism (curly arrows). All of these areas are crucial to being able to rationalise, and more importantly predict, what will happen when organic molecules are treated with any of a plethora of reagents used by organic chemists and chemists in general. Aspects of bonding will receive much more in-depth treatments in both the 'inorganic' and 'physical and theoretical' lecture courses throughout the degree and here we will meet simple, but useful views of bonding, that are fit for our purposes. 'Curly arrow' mechanisms will be met in virtually all of the organic chemistry lecture courses and this course will introduce the key basic principles for drawing reasonable curly arrow mechanisms. Uniquely, this course will provide virtually all of the content you require regarding stereochemistry. Stereochemistry is chemistry in three-dimensions and developing skills to be able to manipulate molecules in 3-D in one's own head will prove important. Practising organic chemists frequently build 'ball-and-stick' models of molecules to better aid visualisation and a cheap, plastic molecular model kit can be very useful when working though stereochemical problems and will be useful throughout your degree - a decent one can be purchased here:
https://www.cochranes.co.uk/show_product.asp?id=399\&catid=44

Synopsis

Bonding - Lewis structures and bonding, formal charge, basic VSEPR, hybridisation, molecular orbitals, structures of some functional groups, drawing organic molecules, skeletal representations

Stereochemistry - conformation, stereochemical definitions, optical activity, configuration, chirality, enantiomers and diastereomers, CIP rules, compounds with more than one stereocentre, meso compounds, racemisation, planar and helical chirality, resolution, relative and absolute configuration

Mechanism - acid base reactions, curly arrows, delocalisation

Two of Oxford's Nobel Laureates

Dorothy Hodgkin

[Dorothy Crowfoot Hodgkin (1910-1994)

- Read Chemistry at Oxford (Somerville College)
- Chemistry Tutor Somerville College
[Nobel Prize 1964 for "her determinations by X-ray techniques of the structures of important biochemical substances"
- 1945 - determined the structure of penicillin

hydrogen atoms omitted for clarity

$$
\text { penicillin } G
$$

Two of Oxford's Nobel Laureates

Robert Robinson

- Sir Robert Robinson (1886-1975)
- Waynflete Professor of Organic Chemistry 1930-1954
. Nobel Prize 1947 for "investigations on plant products of biological importance, especially the alkaloids"
- Inventor of the 'curly arrow'
(a) Conjugation of Ethylene Linkings.-The representation of the active phase and conjugation of butadiene on the partial valency theory is

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \rightarrow \quad-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}-\ldots \mathrm{CH}_{2} \cdots \cdots \cdots
$$

and on the Thomson and Lewis-Langmuir theory as now interpreted

$$
\text { (III.) } \quad \mathrm{CH}_{2}: \mathrm{CH}: \mathrm{CH} \vdots \mathrm{CH}_{2} \quad \underset{+}{\mathrm{CH}_{2}}: \mathrm{CH}: \mathrm{CH}: \dot{\mathrm{CH}}_{2} \quad \text { (IV.) }
$$

Similarly, the conjugation of three double bonds, supposing such to occur, would be represented thus :-

$$
+/ \mathrm{CH}_{2}: \underbrace{\mathrm{CH}: \mathrm{CH}}: \mathrm{CH}: \mathrm{CH}: \mathrm{CH}_{2}^{-} \quad \text { (V.) }
$$

Atoms

Bohr atomic model - electrons moving in specific orbits, s, p, d, f.

- Lewis Bonding Theory (1916) - historic and useful

■ Bonding = achievement of completely filled (or empty) valence shells by sharing (covalent bonds) or transfer of electrons (ionic bonds) between atoms

- Lewis bonding forms a simple basis for the qualitative understand of the structures and properties of organic molecules
- you will meet more sophisticated theories of bonding
- particularly molecular orbital theory - as the course progresses

Gilbert. N. Lewis

Atoms

\square Electronegativity (χ chi) - measure of the relative ability of an atom to attract valence electrons to itself (Pauling Scale 1932, empirical)

Linus Pauling

- Ionic Bonds

■ usually occur between atoms at opposite ends of the periodic table i.e. between atoms that have very different electronegativities
\square the atoms involved in ionic bonding achieve filled shells by the transfer of electrons (usually 1 or 2 electrons)
■ examples

Covalent bonds

■ generally between atoms of similar electronegativity - sharing of electrons

■ in H-F the atoms have a large difference in nuclear charge and hence electronegativity

- the shared pair is therefore not equally distributed but displaced towards F - this is bond polarisation by the inductive effect leading to a permanent dipole

- the Greek letter δ (delta) is used to indicate a partial charge
- organic molecules are held together by covalent bonds
- carbon is in the middle of the period, with no great difference in electonegativity with other elements
\square very difficult to form stable closed shell by ionisation i.e. C^{4+} and C^{4-}

- CH_{4} - methane
\square bonds formed by the combination of 4 H atoms $\left(1 s^{1}\right)$ and 1 C atom $\left(2 s^{2}, 2 p^{2}\right)$

■ NH_{3}-ammonia

- $\mathrm{H}_{2} \mathrm{O}$ - water

Rules for Lewis structures

■ line - = shared pair = covalent bond - no more drawing dots for electrons in bonds

- •• = unshared pair or lone pair
\square formal charge on atom = number of valence electrons - (number of lone pair electrons $+1 / 2$ bonding pair electrons)
\square for $2^{\text {nd }}$ row elements $\mathrm{Li} \rightarrow \mathrm{F}$ the sum of the number of bonds plus the number of lone pairs cannot exceed 4
i.e. no more than 8 electrons around the atom - Lewis octet rule

■ formal charge - charge assigned to each atom in a molecule assuming the electrons in the bonds are shared equally between atoms regardless of electronegativity - bookkeeping tool to denote relationship between the bonding electrons and those 'formally' belonging to each atom - a useful formalism but must be interpreted with care
\square formal charge on atom = number of valence electrons - (number of lone pair electrons + number of bonds)

$$
\text { for } 06-(2+6 / 2)=+1
$$

\square (organic) chemists do not work out the formal charge on atoms, they just remember that whenever oxygen has 8 electrons around it, and has 1,2 , or 3 bonds, it is negative, neutral or positive respectively

\square more generally, whenever an atom has 8 electrons around it, and has one more bond than its neutral state, it will be positively charged, and one fewer bonds it will be negative
$\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2} \quad \mathrm{NH}_{3} \quad \stackrel{\oplus}{\mathrm{~N}} \mathrm{H}_{4}$

- in the hydronium ion the formal positive charge is drawn on oxygen
- in reality the oxygen, being more electronegative than hydrogen, does not have a positive charge and the positive charge is spread out over the 3 hydrogen atoms
\square physical origin of bonding forces (simplified) - if two atoms form a bond, the bonded state must be more stable then the separated atoms
- in covalent bonds the repulsion between the electrons and between the nuclei is balanced by the attraction of the electrons to the positive nuclei at the stable internuclear distance - the bond length

■ lone pairs, a.k.a. non-bonded pairs, formally interact with only one positive nucleus, hence their interelectron repulsion is greater than for a bond pair - they are higher in energy and more available for bonding

\square reactions which reduce this electron-electron repulsion are favoured

■ in the product the lone pair electrons are now a bond pair and see 2 positive nuclei
\square this is the Lewis basicity of lone pairs - frequently the reactive site of a molecule towards electrophiles
\square Lewis structures are useful in predicting the bonding in molecules but they tell us nothing of the shape of the molecules

		$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	
methane	ethene (ethylene)	ethyne (acetylene)	hydrogen cyanide	allene	formaldehyde (methanal)

\square the shapes of the vast majority of organic compounds are determined by repulsion between electrons in the valance shell (VSEPR - valence shell electron pair repulsion)
\square i.e. bond pair - bond pair repulsions bond pair - lone pair repulsions bond pair - bond pair repulsions
■ geometry of molecules is determined by minimising the above interactions
\square for methane, CH_{4}, there are 4 bonding pairs of electrons and they repel each other to be as far apart as possible leading to the tetrahedral structure of methane

■ tetrahedral geometry, $109.5^{\circ} \mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle

- with ammonia there are still four 'groups' to place around the central nitrogen atom -3 bond pairs and 1 lone pair NH_{3} is therefore based on a tetrahedron - its shape is described as pyramidal

$\square 107^{\circ} \mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle $\mathrm{N}-\mathrm{H}$ bond length $=1.01 \AA$
\square similarly with water there are still four 'groups' to place around the central oxygen atom -2 bond pairs and 2 lone pairs - water $\mathrm{H}_{2} \mathrm{O}$ is therefore also based on a tetrahedron - its shape is described as bent

\square bond angles decrease in the order $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ because:
lone pair / lone pair repulsions are greater than
lone pair / bond pair repulsions which are greater than bond pair / bond pair repulsions
\square some examples
$-\mathrm{BF}_{3}$
$-\mathrm{CH}_{3}{ }^{+}$

\square planar 120° bond angle $B-6$ electrons (no lone pair)
F-8 electrons
\square planar 120° bond angle, $\mathrm{C}-6$ electrons (no lone pair), $\mathrm{H}-2$ electrons

■ Quantum Numbers and Atomic Orbitals

\square atomic orbitals - mathematical functions (wavefunctions) related to the probability of finding an electron in a particular region of space - for organic chemistry we will generally be concerned with s and p-orbitals
\square atomic orbitals come in sets associated with the principal quantum number $n=1,2,3, \ldots$

S
p
■ an atom's highest principal quantum number determines the valence shell of the atom - only these orbitals are generally involved in bonding

■ each row of the periodic table indicates a different principal quantum number

- for hydrogen the principal quantum number is 1 giving rise to the familiar 1 s orbital

■ for carbon the principal quantum number is 2 giving rise to the familiar $2 s$ and three $2 p$ orbitals

■ 's' and ' p ' orbitals

S

p_{y}

p_{x}

■ there are three p -orbitals, $\mathrm{p}_{x}, \mathrm{p}_{\mathrm{y}}$ and p_{z}, orthogonal to each other electron density decreases in moving away from the nucleus

- p-orbitals have phase (sign) and a node at the nucleus (where the wavefunction changes sign) - the electron density is zero at a node

■ the order of occupancy of atomic orbitals for a ground state configuration follows the Aufbau principle

\square ground state electronic configuration
i) orbitals filled lowest energy to highest energy following the arrows from top to bottom i.e. $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}, 4 \mathrm{p}$, etc.
ii) maximum two electrons in each orbital which must have opposite spins (Pauli exclusion principle)
iii) empty orbitals of equal energy (e.g. 3×2 p orbitals) take one electron each before pairing occurs (Hund's rule of maximum multiplicity)

Molecular Orbitals (simplified - an organic chemistry view)

- molecular orbitals are formed from combining atomic orbitals - we will look at H_{2}overlap of two hydrogen 1s atomic orbitals leads to two molecular orbitals, one lower in energy, and one higher in energy, than the original atomic orbitals
\square electrons are fed into the lowest energy molecular orbital first

H 1s
H 1s

- molecular orbital diagram for H_{2}
\square energy released in combining two hydrogen atoms to give H_{2} is the bond strength $=432 \mathrm{kJmol}^{-1}$
\square bonding molecular orbital in H_{2} has cylindrical symmetry and is termed a σ orbital (sigma orbital) - c.f. - s-atomic orbital
- in H_{2} this orbital can be viewed as the (Lewis) bond and is called a σ-bond although the electron density is distributed over the whole molecule

■ combinations of p -orbitals
(with all orbitals, the strongest bonding occurs when maximum overlap of (atomic) orbitals occurs)
■ in a similar manner we can combine p-orbitals to make bonding and antibonding σ-molecular orbitals

π-bonding - p-orbitals can also overlap edge on which leads to π-bonds - weaker than the corresponding σ-bonds as the orbital overlap is not as good

- returning to CH_{4} (methane)

\square organic chemists generally draw Lewis structures where the line connecting the atoms represents a localised 2 centre, 2-electron bond. How can we rationalise this with a molecular orbital view of bonding involving overlap of orbitals?
- methane $-\mathrm{CH}_{4}$

2s
\square carbon ground state $1 s^{2}, 2 s^{2}, 2 p^{2}-$ the $1 s$ electrons are core leaving the $2 s$ and $2 p$ valence electrons for bonding
\square the 2 s orbital is spherical (non-directional) and the three $2 p$ orbitals point along their respective axes (i.e. at 90° to one another)

$2 p_{y}$

$2 p_{x}$

■ how can s and p atomic orbitals accommodate the tetrahedral structure of methane (and the structures of many organic molecules)?
\square one approach, initially proposed by Pauling, is the idea of hybridisation - a method of creating orbitals that reproduces the observed shapes of molecules
\square atomic orbitals are just mathematical functions, so we can add and subtract them (as we have done to form simple molecular orbitals)
■ full molecular orbital analysis (2 ${ }^{\text {nd }}$ year lecture course) is another approach

- hybridisation
\square mixing the $2 s$ and three $2 p$ orbitals gives four $s p^{3}$ hybrids that point towards the corners of a tetrahedron

\square these hybrid orbitals can overlap with the hydrogen 1 s orbitals to form $\mathrm{C}-\mathrm{H} \sigma$-bonding orbitals (and the corresponding σ^{*} antibonding orbitals)

sp^{3} hybrid hydrogen orbital on C 1s orbital

C-H σ bonding orbital - a σ bond

■ constructive overlap of hybrid orbital with 1s atomic orbital leads to a bonding σ molecular orbital (σ bond) - often drawn as
 so the provenance of the molecular orbital is clear
 corresponding to the Lewis structure $\mathrm{C}-\mathrm{H}$ bonds each bond $=435 \mathrm{kJmol}^{-1}$
\square as hybrid orbitals are directional they provide much better overlap with the 1s orbitals of the hydrogen atoms
\square ethane $-\mathrm{C}_{2} \mathrm{H}_{6}-s p^{3}$ hybrid orbitals can overlap with each other as in the $\mathrm{C}-\mathrm{C}$ bond in ethane to give a bonding σ molecular orbital

- constructive overlap of hybrid orbitals leads to bonding σ molecular orbital - often drawn as below so the provenance of the molecular orbital is clear

\square rotation around the $\mathrm{C}-\mathrm{C}$ axis does not alter the overlap of the sp^{3} orbitals (the $\mathrm{C}-\mathrm{C} \sigma$ orbital) and occurs readily to give a variety of conformers of ethane - more of this later

■ staggered conformation

■ eclipsed conformation

■ the "end-on" views are termed Newman projections

- hybridisation - sp^{2}
\square mixing the $2 s$ and two $2 p$ orbitals gives three $s p^{2}$ hybrids that lead to trigonal geometry (120° bond angles)

■ three sp^{2} hybrid orbitals and perpendicular p-orbital around central (carbon) atom
\square the bonding in ethene/ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is a result of overlap of sp^{2} hybridised carbon atoms with each other to form the $\mathrm{C}-\mathrm{C}$ σ-bond, and with four hydrogen 1 s orbitals to form the four $\mathrm{C}-\mathrm{H}$ σ-bonds

\square the remaining two p-orbitals overlap to form a π-bond

■ overlap of the sp^{2} hybrid orbitals leads to three σ-bonds - two $\mathrm{C}-\mathrm{H}$ bonds and one $\mathrm{C}-\mathrm{C}$ bond
■ overlap of the remaining perpendicular ' p '-orbitals gives a π-bond

overlap of ' p ' orbitals gives $\mathrm{C}-\mathrm{C} \pi$-bond

the two lobes of the $\mathrm{C}-\mathrm{C} \pi$-bond

overlap of sp^{3} hybrid orbitals gives $\mathrm{C}-\mathrm{C} \sigma$-bond

\square the π-bond leads to electron density above and below the molecular plane
\square rotation about the $C-C$ axis is impossible as this would reduce overlap of the p-orbitals and would break the π-bond

\square as before the π-molecular orbital (π-bond) is generally drawn as two separate p -atomic orbitals for clarity

\square rotation about $\mathrm{C}-\mathrm{C}$ axis would break the π-bond and does not occur
\square hence alkenes are configurationally stable (i.e. cis and trans)

■ hybridisation - spmixing the $2 s$ and one $2 p$ orbitals gives two sp hybrids that lead to linear geometry (180° bond angles) sp hybrid orbitals

sp hybrid orbitals
\square the two sp hybrid orbitals are arranged 180° apart to form the two π-bonds

- forming two sp hybrids leaves two p-orbitals which can form π-bonds

\square this is the bonding arrangement found in ethyne (acetylene) with the sp hybrids overlapping with the hydrogen 1 s orbitals (not shown) the remaining p orbitals overlapping
\square the triple bond in acetylene is made up from one σ-bond and two orthogonal π-bonds, the carbons are said to be sp
π-bond formed by
p-orbital overlap

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

\square view without σ-orbitals
\square a quick method to work out the hybridisation of an atom is to count the number of substituents on that atom (including lone pairs of electrons), remembering that in the bonded environment first row elements have 8 electrons around them (there are exceptions to this method which we will meet later)

4 substituents $=s p^{3}$ hybridised, $\quad 3$ substituents $=s p^{2}$ hybridised, $\quad 2$ substituents $=s p$ hybridised
\square allene $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ - what is its molecular shape?
\square terminal carbons bonded to 2 hydrogen atoms (σ-bonds) and double bonded to central carbon (σ-bond and π-bond) $-\therefore$ terminal carbon atoms are sp^{2} hybridised

■ central carbon bonded to 2 substituents \therefore has linear geometry \therefore sp hybridised
■ central carbon forms a single σ-bond with each terminal carbon (sp-sp2 hybrid orbital overlap)

sp^{2} hybridised carbon (c.f. ethene)

\square no free rotation

- CH_{2} groups are perpendicular

- alternative perspective
- hybridisation can be used with atoms other than carbon
\square the nitrogen atom in ammonia can be viewed as sp^{3} hybridised as can the oxygen atom in water although the $\mathrm{H}-\mathrm{X}-\mathrm{H}$ bond angle is slightly less than 109° due to lone pair-bond pair repulsion

\square similarly for amines, alcohols, ethers etc.

methylamine

ethanol

diethylether
- BF_{3} - three substituents around boron - no lone pair \therefore planar, sp^{2} hybridised, planar with empty p-orbital on boron

$\square \mathrm{CH}_{3}{ }^{+}$- three substituents around carbon - no lone pair \therefore planar, sp^{2} hybridised, planar with empty p -orbital on carbon - other carbocations have similar planar structure

■ hybridisation in functional groups (sites of chemical reactivity)
\square formaldehyde (c.f. bonding in ethene)

π-bond formed by overlap of adjacent p-orbitals
\square bonding and reactivity is similar in aldehydes and ketones acetaldehyde
(ethanal)
 acetone
(propanone)

\square electronegativity difference results in polarisation of $\mathrm{C}-\mathrm{O}$ bond
\square nucleophiles \therefore react on carbon and break the weaker π-bond

■ conversely, lone pairs are sites of electron density
\square electrophiles \therefore react on oxygen

■ imines - planar, lone pair in $s p^{2}$ orbital

- oximes- planar, lone pair in sp^{2} orbital
\square nitriles - e.g. $\mathrm{CH}_{3} \mathrm{CN}$ (c.f. bonding in acetylene)

lone pair in sp-orbital

